Abstract
The effect of hot deformation temperature on the deformed microstructures and evolution of microstructure and texture of a 21Cr Ti-Nb dual-stabilized ferritic stainless steel was studied using plane strain hot compression tests on a Gleeble 1500 thermomechanical simulator. The deformation was carried out at 550 - 950 °C with a strain of 0.5 at 1 s-1. The compression was followed by fast cooling to room temperature in order to study the deformed microstructures. Some specimens were heated from the deformation stage to either 750 or 950 °C and held for 0 or 30 s in order to study the nucleation process of recrystallization. The electron backscatter diffraction technique was used to analyze the resultant microstructures and textures. Lowering of the deformation temperature increased the rate of static recrystallization (SRX) and decreased the recrystallized grain size. After deformation at 550 and 600 °C and complete SRX, beneficial γ-fibre texture formed presumably as a result of nucleation at in-grain shear bands. SRX after deformation at 750 °C or above led to the formation of harmful α-fibre textures with weak γ-fibre.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献