Effect of Hot Deformation Temperature on the Restoration Mechanisms and Texture in a High-Cr Ferritic Stainless Steel

Author:

Mehtonen Saara1,Karjalainen L. Pentti1,Porter David A.1

Affiliation:

1. University of Oulu

Abstract

The effect of hot deformation temperature on the deformed microstructures and evolution of microstructure and texture of a 21Cr Ti-Nb dual-stabilized ferritic stainless steel was studied using plane strain hot compression tests on a Gleeble 1500 thermomechanical simulator. The deformation was carried out at 550 - 950 °C with a strain of 0.5 at 1 s-1. The compression was followed by fast cooling to room temperature in order to study the deformed microstructures. Some specimens were heated from the deformation stage to either 750 or 950 °C and held for 0 or 30 s in order to study the nucleation process of recrystallization. The electron backscatter diffraction technique was used to analyze the resultant microstructures and textures. Lowering of the deformation temperature increased the rate of static recrystallization (SRX) and decreased the recrystallized grain size. After deformation at 550 and 600 °C and complete SRX, beneficial γ-fibre texture formed presumably as a result of nucleation at in-grain shear bands. SRX after deformation at 750 °C or above led to the formation of harmful α-fibre textures with weak γ-fibre.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3