Hot Deformation Behavior and Microstructure Evolution of GH625 Superalloy Tube during Extrusion Process

Author:

Guo Qing Miao1,Li De Fu1,Guo Sheng Li1,Xie Guo Ling2

Affiliation:

1. General Research Institute for Non-ferrous Metals

2. University of Science and Technology Beijing

Abstract

Flow behavior and microstructures of GH625 superalloy were investigated by hot compression tests. Then the GH625 superalloy tube was hot extruded according to the hot deformation behavior, and the microstructures of different position of extruded tube was also analyzed. The results show that the actual deformation temperature of the specimen deformed at a strain rate of 10.0s-1 is higher than the preset temperature, resulting in a deformation thermal effect. Thus, the microstructure evolution of GH625 superalloy is controlled both by the strain rate and deformation temperature. It is also found that the GH625 superalloy tube can be successfully fabricated with a stable extrusion speed of 40 mm·s-1, extrusion ratio of 4.1 and preheating temperature of 1200°C. The microstructure of extruded tube was obviously fined due to the occurrence of dynamic recrystallization(DRX). Different degrees of DRX were observed in outer wall, center and inner wall of the tube, which is similar to that in the head, middle and tail of the tube. An extruded tube containing fully DRX grains can be obtained by cutting the head and tail of the tube, and machining a small amount of the inner wall.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3