Study of Properties of Nanostructured Multilayer Composite Coatings of Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N

Author:

Vereschaka Alexey Anatolevich1,Vereschaka Anatoliy Stepanovich1,Bublikov Jury I.2,Aksenenko Anatoliy Y.1,Sitnikov Nikolay N.3

Affiliation:

1. Moscow State Technological University STANKIN

2. IKTI RAN

3. Federal State Unitary Enterprise “Keldysh Research Center”, Moscow, Russian Federation

Abstract

The structures of surface layers of the tool material, adapted to the conditions of the thermomechanical loading during the cutting process, can be formed with the use of different processing methods, the most effective of which is to deposit functional coatings on working surfaces of the cutting tool. During the studies, two nanostructured multilayer composite coatings (NMCCs) were considered: Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N. Metallographic studies were conducted, and the phase compositions of the coatings were determined by X-ray crystal analysis. The efficiency of tools made of carbide T14K8 with developed coatings was determined by comparative evaluation of tool life of a tool without coating, a tool with standard coating (TiN), and a tool with elaborated coatings (Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N) in turning structural steel 45. These tests allow noting the increase in tool life of a tool with elaborated NMCCs by up to 4 times as compared with tool life of an uncoated tool and by up to 2 times as compared with tool life of standard coating TiN. Meanwhile, NMCC of Ti-TiN-(TiCrAl) showed lifetime about 10% longer than NMCC of Zr-ZrN-(ZrNbCrAl)N). The longer lifetime of NMCC of Ti-TiN-(TiCrAl) conforms to its better adhesion characteristics and thinner nanosublayers of its wear-resistant layer.

Publisher

Trans Tech Publications, Ltd.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3