The Use of Solid State NMR to Evaluate EVA/Silica FILMs

Author:

Passos Adriano Alves,Tavares Maria Inês Bruno,Neto Roberto Cucinelli P.,Ferreira Antonio G.1

Affiliation:

1. Universidade de São Paulo

Abstract

Nanocomposites based on ethylene-co-vinyl acetate (EVA) and silica oxide (SiO2), with nanometric size (40nm) were prepared by solution process, employing chloroform as solvent. The nanocomposites were mainly characterized by solid state nuclear magnetic resonance spectroscopy (NMR). From the methodology employed polymer matrix was evaluated by the determination of proton nuclear spin-lattice relaxation time (T1H) and spin-spin relaxation time (T2H) employing low field NMR spectrometer and also applying carbon-13 (13C) solid-state NMR techniques and proton spin-lattice relaxation time in the rotating frame (T1pH) by high field NMR. The nanoparticle, silica oxide, was analyzed by silicon-29 (29Si) NMR MAS spectrum. The evaluation of relaxation time showed an increase in the proton spin-lattice relaxation time, because of silicon nucleus interaction with polymer chains promoting an increase in the sample rigidity, which is a result of good silica oxide dispersion in the polymeric matrix. The nanomaterial with 5% of SiO2presented good dispersion of silica oxide in the polymeric matrix, because of the formation of strong intermolecular interaction.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3