Electronic and Vibrational Properties of Porous Silicon

Author:

Cruz-Irisson Miguel1,Wang Chu Min2

Affiliation:

1. ESIME-Culhuacan

2. Universidad Nacional Autónoma de México

Abstract

For ordered porous silicon, the Born potential and phonon Green’s functions are used to investigate its Raman response, while the electronic band structure and dielectric function are studied by means of a sp3s* tight-binding supercell model, in which periodical pores are produced by removing columns of atoms along [001] direction from a crystalline Si structure and the pores surfaces are passivated by hydrogen atoms for the electronic band structure calculations. This supercell model emphasizes the interconnection between silicon nanocrystals, delocalizing the electronic and phononic states. However, the results of both elementary excitations show a clear quantum confinement signature, which is contrasted with that of nanowire systems. In addition, ab-initio calculations of small supercells are performed in order to verify the tight-binding results. The calculated dielectric function is compared with experimental data. Finally, a shift of the highest-frequency Raman peak towards lower energy is observed, in agreement with the experimental data.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3