Study of Mn doping on the Structural, Optoelectronic and Photoluminescence Properties of F-Doped SnO2 Sprayed Thin Films for Optoelectronic Applications

Author:

Houaidji Naoual1,Ajili Mejda2,Chouial Baghdadi1,Kamoun Najoua Turki2,Kamli Kenza3,Khadraoui Asma1,Hadef Zakaria4,Zaidi Beddiaf5,Hadjoudja Bouzid1

Affiliation:

1. University Badji Mokhtar

2. University Tunis El Manar

3. University 20 Août 1955

4. Université 20 août 1955

5. University of Batna 1

Abstract

The aim of this work is the production and the characterisation of (SnO2: (Mn, F)) thin films with appropriate optoelectronic properties required for application as ohmic contacts in photovoltaic application devices. Transparent conducting Manganese-fluorine co-doped tin oxide (SnO2: (Mn, F)) thin films have been deposited onto preheated glass substrates using the chemical spray pyrolysis (CSP) method. The ([Mn2+]/[Sn4+]) atomic concentration ratio (y) in the spray solution is varied between 0 and 8 at. %. The structural, the opto-electrical and the photoluminescence properties of these thin films have been studied. It is found that the deposited thin films are polycrystalline with a tetragonal crystal structure corresponding to SnO2 phase having a preferred orientation along the (200) plane. Transmission and reflection spectra reveal the presence of interference fringes indicating the thickness uniformity and the surface homogeneity of the deposited samples. Photoluminescence behaviour of Mn-F co-doped SnO2 thin films was also studied. Photoluminescence spectra reveal the presence of the defects like oxygen vacancies in the materials. In addition, The electrical resistivity, volume carrier concentration, surface carrier concentration and electrical mobility were determined from Hall Effect measurements and the following results were obtained: n-type conductivity in all the deposited thin films, a low resistivity of 1.50×10-4 Ω cm, and a high electrical mobility of 45.40 cm2 V-1 s-1 with Mn co-doping concentration equals to 7 at. %. These experimental results show that the electrical properties of these thin films where greatly improved making them suitable as ohmic contacts in photovoltaic applications devices.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3