Fabrication of High-Verticality Grating Nanostructures Using Twice-Deposited Etching Mask Layers

Author:

Liu Z.H.1,Pan Cheng Teng1,Chao C.H.1,Wang W.C.1,Liu C.Y.1

Affiliation:

1. National Sun Yat-Sen University

Abstract

To study the influence of twice-deposited mask layers on the verticality of side wall and the aspect ratios of silicon-based nanostructures, the performance of focused ion beam (FIB) and CF4-based inductive coupled plasma reactive ion etching (ICP-RIE) processes was realized. The first etching mask of chromium (Cr) was deposited by radiofrequency (RF) magnetron sputtering as the conductive and etching barrier layers. Next, the Cr layer was directly patterned by a dual-beam FIB system to form nanograting patterns. Thereafter, a secondary mask layer of oxide (SiO2) with a thickness of 50 nm was deposited by sputtering. In order to study the influence of various deep etching parameters on verticality and aspect ratios, we examined argon flow rates, coil powers, platen powers, and chamber pressures. The SiO2 barrier layer on the side wall could be retained to maintain a high verticality contour and reduce the line-width shrinking ratio to surmount over etching during the use of fluorine-based gas. The residual Cr and SiO2 layers were dissolved and removed using a wet etching process consisting of a Cr-etching solution (CR-7). Measurements show that the verticality and aspect ratios of the grating nanostructures were 92.1° and 5.63, respectively.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3