Novel, Simple, Versatile and General Synthesis of Nanoparticles Made from Proteins, Nucleic Acids and other Materials

Author:

Kumar Challa V.1,Deshapriya Inoka K.1,Duff Michael R.1,Blakeley Brett1,Lee Haye Denise1

Affiliation:

1. University of Connecticut

Abstract

A new, simple, and versatile method was developed to prepare protein nanoparticles, for the first time, and the approach was extended to prepare organic, inorganic, and biological nanomaterials. For example, nanoparticles of met-hemoglobin and glucose oxidase are readily prepared by contacting a fine spray of aqueous solutions of the proteins to an organic solvent such as methanol or acetonitrile. The protein nanoparticles suspended in organic solvents retained their secondary structure and biological activities to a significant extent. Using this approach, we also successfully prepared nanoparticles of transition metal complexes, organic molecules, nucleic acids, inorganic polymers, and organic polymers. Particle size depended on reagent concentrations, pH and the solvent used, and particle sizes have been controlled from 20 to 200 nm by adjusting these parameters. In each case, particle sizes and size distributions were determined by dynamic light scattering and the data have been confirmed by electron microscopy. Addition of appropriate electrolytes to the nanoparticle supensions stabilized them against aggregation or crystallization, and particles were stable over months of storage at 4°C. Nanoparticles of met-hemoglobin, glucose oxidase, and calf thymus DNA indicated retention of their native-like structures, as evidenced from their respective circular dichroism spectra. Enzyme nanoparticles retained their catalytic activities to a significant extent. For example, peroxidase-like activity of met-hemoglobin nanoparticles suspended in methanol was 0.3 M-1 s-1, which is comparable to the activity of met-hmoglobin in aqueous buffer (1.0 M-1 s-1) even though the former has been measured in methanol. This activity is far greater than the activity of free heme in methanol. Thus, the nanobiocatalysts retained substantial activity in organic solvents. Nanoparticles of anthracene indicated extensive excitonic coupling due to inter-chromophore interactions. The current method of nanoparticle synthesis is rapid, simple, versatile, reproducible and resulted in the formation of nanoparticles from a variety of materials, many of them for the first time.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3