Tin Selenide Quantum Dots Electrochemical Biotransducer for the Determination of Indinavir - A Protease Inhibitor Anti-Retroviral Drug

Author:

Feleni Usisipho1,Ajayi Rachel Fanelwa1,Jijana Abongile1,Sidwaba Unathi1,Douman Samantha2,Baker Priscilla2,Iwuoha Emmanuel2

Affiliation:

1. University of the Western Cape

2. University of Western Cape

Abstract

Biocompatibility of tin selenide quantum dots was achieved by the incorporation of 3-mercaptopropionic acid (3-MPA) as a capping agent, which also improved the stability and the solubility of the material. The UV-Vis spectrophotometric analysis of the quantum dots revealed a broad absorption band at ~ 330 nm (with a corresponding band gap, Eg, value of 3.75 eV), which is within the range of values expected for quantum dots materials. The 3-mercaptopropionic acid-capped tin selenide (3-MPA-SnSe) quantum dots were used to develop an electrochemical biosensor for indinavir, which is a protease inhibitor antiretroviral (ARV) drug. The biosensor was prepared by the self-assembly of L-cysteine on a gold electrode that was functionalised with 3-MPA-SnSe quantum dots, followed by cross-linking with cytochrome P450-3A4 (CYP3A4) using 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). The electrocatalytic properties of the biosensor included a characteristic cyclic voltammetric reduction peak at-380 mV, which was used to detect the response of the biosensor to indinavir. The sensor performance parameters included response time and limit of detection (LOD) values of 11 s and 3.22 pg/mL, respectively. The test concentration range studied (0.014 – 0.066 ng/mL) gave a linear calibration plot for indinavir, and it was lower than the physiological plasma concentration index (i.e. maximum plasma concentrations, Cmax,) of indinavir (5 - 15 ng/mL) normally observed 8 h after intake. This indicates that the biosensor can be very useful in the case of ultra-rapid metabolisers where very low Cmax values are expected

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3