Synthesis and Characterization of Copper Nanoparticles by Electrochemical Method: Effect of pH

Author:

Anand Vikky1,Harshavardhan 2,Srivastava Vimal Chandra2ORCID

Affiliation:

1. Indian Institute of Technology, Roorke

2. Indian Institute of Technology Roorkee

Abstract

Herein, copper nanoparticles were synthesized using electrochemical method at pH 5, 6.5, 9.5 and 12.5 (coded as Cu5, Cu6.5, Cu9.5 and Cu12.5, respectively). Copper was used as electrode whereas 0.15 M oxalic acid in aqueous solution was used as an electrolyte. Effect of pH of the electrolyte solution on the morphological, structural and textural properties of prepared copper nonoparticles was studied. Prepared nanoparticles were characterized by X-ray crystallography, Field emission scanning electron microscope, transmission electron microscopy, thermogravimetric analysis, differential thermal analysis and textural analysis. The morphology and sizes of the nanoparticles prepared varied with the initial pH of the solution. Sizes of synthesized Cu particles were found to be in the range of 20 nm to 7 μm. All the particles were mesoporous in nature. Cu5 was found to contain 67% copper hydroxide and 33% copper oxalate whereas Cu6.5, Cu9.5 and Cu12.5 essentially consisted of copper hydroxide.

Publisher

Trans Tech Publications, Ltd.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3