Electrochemical Study of Pyrene on Glassy Carbon Electrode Modified with Metal-Oxide Nanoparticles and Graphene Oxide/Multi-Walled Carbon Nanotubes Nanoplatform

Author:

Boikanyo Diseko1,Adekunle Abolanle S.2,Ebenso Eno E.1

Affiliation:

1. North-West University

2. Obafemi Awolowo University

Abstract

This work describes and compares the electron transport and electrocatalytic properties of chemically synthesised cobalt oxide (Co3O4) and nickel oxide (NiO) nanoparticles grafted onto graphene oxide (GO)/acid treated multi-walled carbon nanotubes decorated glassy carbon electrode. Successful synthesis of these nano materials was confirmed using microscopic and spectroscopic techniques. Successful modification of electrode was confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Results showed that the GCE-fMWCNT-NiO and GCE-fMWCNT- Co3O4 nanocomposite modified electrodes gave faster electron transfer process in both 5 mM Ferri/Ferro ([Fe(CN)6]3−/4−) redox probe and 0.1 M phosphate buffer solution (PBS). GCE-fMWCNT-NiO and GCE-fMWCNT-Co3O4 electrodes also gave enhanced Pyrene oxidation current compared with bare GCE and other electrodes studied. The charge transfer resistance, electron transfer rate constant (ks), Tafel value, limit of detection (LoD), sensitivity, adsorption equilibrium constant (β), Gibbs free energy change due to the adsorption (ΔGoads) of Pyrene onto the GCE-fMWCNT-Co3O4 are established and discussed. The LoD and ΔGoads for Pyrene were 1.62 nM and -15.8 kJ/mol, respectively, over a linear dynamic range of 1.0 x 10-9 – 100 x 10-9 M. The electro-oxidation of Pyrene was a diffusion dominated process, but demonstrated adsorption thought to be as a result of a combination of the strong pi-pi electron interactions between Pyrene and the MWCNT, thus the thin film formed on the surface of the electrode by the analyte and its reaction intermediates. The LoD compared favourably with literature reported values. GCE-fMWCNT-Co3O4 gave better performance to Pyrene electrooxidation, good resistance to electrode fouling, higher catalytic rate constant and lower limit of detection. The sensor is easy to fabricate, cost effective and could be used for routine determination of Pyrene in food and environmental matrices.

Publisher

Trans Tech Publications, Ltd.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3