Quick and Sensitive Detection of Prion Disease-Associated Isoform (PrPSc) Using a Novel Gold Surface/PrPSc/Gold Nanoparticles Sandwich SPR Detection Assay

Author:

Lou Zhi Chao1,Sun Jin Qiang1,Wan Jin Feng1,Zhang Xiao Hong2,Zhang Hai Qian2,Gu Ning3

Affiliation:

1. Nanjing Forestry University

2. Nanjing University of Aeronautics and Astronautics

3. Southeast University

Abstract

Prion protein has drawn great attention due to its pathological potential to prion diseases. Discriminate and detection of the trace quantities PrPSc is an important measure for prion disease diagnosis at the presymptomatic stage. In this study, we developed a novel sandwich surface plasmon resonance (SPR) assay for the detection of PrPSc, involving bare gold surfaces and bare gold nanoparticles. PrPSc can be captured by the SPR sensing surface via a surface assisted coupling reaction between its intra-molecular disulfide bond and the gold atoms, while PrPC cannot bind to the gold surface strongly. The gold nanoparticles were proved to amplify the SPR detection signals via the coupling of their localized surface plasmon (LSP) with the propagating plasmon on the SPR gold surface. Our results confirmed that the bare SPR gold surface successfully captured the PrPSc from the solution with a LOD of 0.5ng/mL and a linear detection range from 0.5ng/mL to 500ng/mL. Injecting the gold nanoparticles after PrPSc yielded a dramatic enhancement of signal, with a lower LOD of 0.001ng/mL and a linear detection range from 0.001ng/mL to 10ng/mL. The gold nanoparticles permitted 4 to 322-fold increase of the signals. The required detection time was controlled in 15 min. PrPC, cys-protein G and their mixtures with PrPSc, were also detected via this sandwich SPR detection assay. Atomic force microscope (AFM) was used to evaluate the surface morphology of the SPR gold substrate after the detection. All the obtained results suggested that this novel SPR sandwich detection assay in our work was efficient, sensitive and specific for the detection of trace PrPSc

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3