Numerical Study of Long Channel Carbon Nanotube Based Transistors by Considering Variation in CNT Diameter

Author:

Dehghani Sajjad1

Affiliation:

1. Shiraz University

Abstract

While much numerical studies have been done on short channel carbon nanotube field effect transistors (CNT-FETs), there are only a few numerical reports on long channel devices. Long channel CNT-FETs have been widely used in chemical sensors and biosensors as well as light emitters. Therefore, numerical study is helpful for a better understanding of the behavior of such devices. In this paper, we numerically analyze long-channel CNT-FETs by solving the continuity and charge equations self-consistently. To increase the accuracy of simulation, filed-dependent mobility is applied to the equations. Furthermore, a method is proposed to obtain the electrical current of transistors as a function of CNT diameter. Obtained results are in good agreement with the previous experimental data. It is found that compared to a CNT-based resistor, the dependence of current on diameter is much higher in a CNT-FET. Finally, reproducibility of transistors based on the arrays of random CNTs of 1-2 nm diameter in terms of the CNTs number is also investigated.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3