Abstract
It is important to analyze cell monolayer adherence for the development of biomedical devices of anti-thrombogenic vascular grafts. Endothelial cells must be firmly attached to the biomaterials when cells are seeded in order to create a natural lining. Polystyrene (PS) is presented as a reproducible implant model substrate for studying cell – material interactions. Polystyrene was deposited as a thin layer on a thiol functionalized gold electrode. Fibronectin (Fn), a protein promoting the cell monolayer adhesion was adsorbed on PS surface. The different steps of this multilayer assembly were characterized by Surface Plasmon Resonance (SPR) technique. A right shift of the SPR resonance angle θSPR was observed leading an increase from 65.5 deg in the case of gold electrode to 66.8 deg in the case where cell monolayer was cultured onto functionalized gold substrate. A shift in the SPR peak minimum intensity was detected in the SPR response of Au/Thiol/PS/Fn and Au/Thiol/PS/Fn/Cell multilayer assembly structures. This result is explained using Atomic Force Microscopy (AFM) images and according transverse profiles which indicate surface morphological modifications in term of thickness.
Publisher
Trans Tech Publications, Ltd.