Selected Questions Related to Characterization of MEMS Structures Comprising PZT Piezo Layer

Author:

Zając Jerzy1,Gutt Tomasz2,Piasecki Tomasz2,Grabiec Piotr2

Affiliation:

1. Instytut Technologii Elektronowej

2. Wrocław University of Technology

Abstract

PZT (lead zirconium titanate) is an intermetallic compound exhibiting piezoelectric, ferroelectric, and pyroelectric properties. The perovskite crystallographic structure of the PZT is responsible for the above effects. MEMS structures with piezo layers can be used as sensors, actuators, or converters. The abilities of piezo materials to generate an electric charge as a response to stress and a change of shape as a response to electric field are very attractive in numerous applications. Cantilever structures with a mass attached can accordingly be used as energy harvesters converting energy of environment vibrations. Other applications of cantilevers are small displacement sensors or actuators in micro/nanoscale. Membrane structures can work as ultrasonic transducers. If properly shaped cavity is produced, the structure may be used as a part of ink printer head or as a pressure sensor.For physical description of piezo phenomena, constitutive equations in several forms are used. They work well for bulk piezoelectric, although for thin layers deposited on silicon or similar substrate, piezoelectric coupling coefficients must be redefined because of the interaction of thin piezo layer and thicker substrate.Typical electric characterization of piezo MEMS structures includes CV and IV measurements. QV (charge-voltage) hysteresis loop study is an additional method used for this characterization. Complex electromechanical methods are used for surveying piezoelectric coupling coefficients. These methods employ mechanic actuation and electric response Q measurements or AC electric V (voltage) excitation and measurement of mechanical response v (velocity). In the second case, a very precise tool for velocity evaluation is necessary. Such tool could be for example laser Doppler vibrometer, enabling measurements of picometer resolution in several MHz bandwidth. In many cases resonance features of structures have revealed themselves interesting and became a subject of the study. Some vibrometers make measurement of micro cantilever vibrations excited by Brownian movement of air particles possible.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3