Nanoencapsulation of Permethrin in Polylactic Acid to Enhance Insecticide Persistence for Scolytinae Pest Control

Author:

Barrera-Méndez Felipe1ORCID,Ibarra-Juárez Luis Arturo1,Hernández-Cervantes Guadalupe1,Cruz Siuly Xenia Ramos2,Vázquez Mónica3,Pérez-Landa Irving David1,Bonilla-Landa Israel1,Olivares-Romero José Luis1

Affiliation:

1. Instituto de Ecología AC

2. Instituto Tecnológico Superior de Coatzacoalcos

3. Instituto de Ecología

Abstract

Nanotechnology can be used to protect plants against Fusarium Dieback and the Laurel Wilt, that are new and lethal insect-vectored diseases that can host over 300 tree species, including avocado trees. The vectors of these diseases are beetles members of the Scolytinae subfamily, notoriously difficult to control because they spend most of their lives hidden within galleries. Nevertheless, when tested on avocado bolts, some insecticides (including permethrin) provided a reduction in the number of entrance holes or beetle emergence, but the persistence of pesticide residues might have been influenced by factors like rainfall and sunlight. The present study aims to encapsulate permethrin in polylactic acid nanospheres, conferring protection against losses by physic and chemical factors, ultimately increasing its persistence. The particle size, zeta potential, and encapsulation efficiency obtained were 393nm, -32mV, and 27%, respectively. After 96 h of exposure to UV-A light, the insecticidal activity of unencapsulated permethrin was severely diminished, having a reduction in mortality in scolytinae beetles from 80% to 40%, while the nanoencapsulated permethrin retained a 70%. The study has concluded the potential advantage of formulating permethrin into nanometric biodegradable spheres, enhancing the persistence of the insecticide while removing the use of toxic organic solvents as vehicle for the active ingredient, reducing the environmental impact.)

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3