Crystallography, Impurities and Magnetic Properties of Mn-Doped ZnO Nanoparticles Prepared by Coprecipitation Method

Author:

Harsono Heru1,Wardana I.N.G.1,Sonief A.A.1,Darminto 2

Affiliation:

1. Brawijaya University

2. Institut Teknologi Sepuluh Nopember

Abstract

Introduction of Mn2+ions into ZnO in the form of Zn(1-x)MnxO (0.00≤x≤0.25) has been done by means of coprecipitation method at low temperature using Zn(CH3COO)2·2H2O, Mn(CH3COO)2·4H2O, HCl, and NH4OH as starting materials. The XRD analysis showed that the produced Zn(1-x)MnxO (0.00≤x≤0.09) samples were crystallized in single phase of wurtzite with hexagonal structures. Besides the wurtzite, the presence of the secondary phase of hetaerolite ZnMn2O4with tetragonal structures was detected in the samples having 0.10≤x≤0.25. The nanometer-sized Zn(1-x)MnxO crystals obtained from XRD analysis were well confirmed by SEM and TEM images. The electron diffraction data showed that the secondary phase formed even for 0.01 and 0.10 Mn-doping samples were ZnMn2O4and MnO2. The VSM data indicate that the paramagnetic properties of Mn doping occurred at 0.00≤x≤0.06 and 0.10≤x≤0.25 as well as superparamagnetic properties occur in Mn doping 0.07≤x≤0.09. The most interesting fact in this study was the formation of secondary phases in all Mn-doped ZnO samples, even for the smallest x of 0.01.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3