Spectro-Electrochemical of Detection Anthracene at Electrodeposited Polyamic Acid Thin Films

Author:

Ngema Xolani Terrance1,Ward Meryk1,Hamnca Siyabulela1,Baker Priscilla Gloria Lorraine1,Iwuoha Emmanuel Iheanyichukwu1

Affiliation:

1. University of the Western Cape

Abstract

Polyamic acid (PAA) thin films were prepared by electrodepositing PAA onto indium tin oxide (ITO) electrode and characterized using electrochemical methods (cyclic voltammetry, square wave voltammetry), Ultraviolet Visible spectroscopy and Ultraviolet Visible/Spectro-electrochemistry (UV/vis Spectro-electrochemistry). The electrodeposited PAA thin films were observed to have two redox couples with a formal of 118 mV and 274 mV. The diffusion coefficient (De) determined from cyclic voltammetry was found to be 7.9x10-6 cm2/s and provide a measure of how fast charge is transported through the thin film. PAA showed a broad absorption peak at 214 nm due to the carbonyl chromophores within the polymer and shoulder peak at 293 nm from a quinoid-type chromophore. The calculated band gap of 4.23 eV suggested the polymer was optically transparent between 300 nm to 800 nm. This indicated that the PAA thin films has emerged as a very promising and cost effective alternative material to ITO with good transparent and conductive properties. PAA thin films were further applied for the detection of anthracene. The analytical response of anthracene was studied at the ITO/PAA using spectro-electrochemistry. The characteristic analytical absorbance signal for anthracene was clearly identified at 375 nm when ITO/PAA electrode was polarised at -800 mV (vs Ag/AgCl). The calibration curve for anthracene showed a linear response from 4.95x10-4 to 1.15x10-2 M. The ITO/PAA showed a low detection limit of (0.0068 g/L) and high sensitivity for anthracene, making it a suitable platform for spectro-electrochemical analysis of polycyclic aromatic hydrocarbons.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3