Affiliation:
1. COMSATS University Islamabad
2. Quaid-I-Azam University
Abstract
The plasmonic effects of Au-Ag alloy nanoparticles, gold nanoparticles (AuNPs), and silver nanoparticles (AgNPs) are studied and compared to their size. Various factors that affect the size of alloy nanoparticles are varied such as concentration and ratio of gold and silver salt, time of addition of reducing agent, temperature and pH. Addition of reducing agent at different time intervals for the synthesis of pure and alloy Au-Ag NPs shows a gradual increase in size, as well as increase in heterogeneity of nanoparticles with delayed addition of reducing agent. Temperature dependent alloy nanoparticles also shows a gradual increase in size with increase in temperature. pH dependent alloy nanoparticles show decrease in size with increase in pH from 4 to 8. Their size is characterized by SEM and corelated with UV-Vis spectroscopy. Furthermore, alloy nanoparticles synthesized by varying temperature are also characterized for their antibacterial studies against Escherichia coli and Staphylococcus aureus strains. Nanoparticles synthesized at high temperature (100°C) have shown higher bioactivity against both organisms due to small and uniform size nanoparticles, while nanoparticles synthesized at lower temperature (50°C) have lower biological activity. Alloy nanoparticles synthesized at 60°C and 70°C are more active against E. coli while those of 80°C and 90°C are more active against S. aureus.
Publisher
Trans Tech Publications, Ltd.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献