Experimental and Numerical Study on the Mode I Delamination Toughness of Z-Pinned Composite Laminates

Author:

Zheng Xi Tao1,Gou Lin Hu1,Han Shu Yun1,Yang Fan1

Affiliation:

1. Northwestern Polytechnical University

Abstract

An experimental investigation was performed on mode I delamination of z-pinned double-cantilever-beams (DCB) and associate z-pin bridging mechanisms. Tests were performed with ten types of samples: (1) big-pin reinforced DCB (double-cantilever-beams) with three areal densities D=2.01%, 5.15%, 8.04%, respectively; (2) median-pin reinforced DCB with three areal densities D=0.85%, 2.17%, 3.40%; (3) small-pin reinforced DCB with three areal densities D=0.25%, 0.63%, 0.90% and (4) without pin reinforced DCB specimens. Delamination tests samples were prepared from unidirectional continuous carbon fibre/epoxy prepreg (T300/TDE86), made into 3 mm thick unidirectional laminates with and without a block of Z-pins in the crack path. Fracture testing was carried out under Mode I (standard DCB test). Experiments have shown that increases in debond resistance and ultimate strength depend on the material, size, density, location of the pins and the mechanisms of pin deformation. A finite element (FE) model is developed to investigate mode I delamination toughness of z-pin reinforced composite laminates. The z-pin pullout process is simulated by the deformation of a set of non-linear springs. A critical crack opening displacement (COD) criterion is used to simulate crack growth in a DCB made of z-pinned laminates. The toughness of the structure is quantified by the energy release rate, which is calculated using the contour integral method. The FE model is verified for both unpinned and z-pinned laminates. Predicted loading forces from FE analysis are compared to available test data. Good agreement is achieved. The numerical results indicate that z-pins can greatly increase the mode I delamination toughness of the composite laminates.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3