Delamination-Crater Interaction in Damage of Glass/Epoxy Composite Plates Subjected to Impact Fatigue

Author:

Mouhoubi Said1,Azouaoui Krimo1

Affiliation:

1. University of Sciences and Technology (USTHB)

Abstract

The use of composite materials is increasing although their behavior under impact fatigue loading remains rather unknown. This study is to assess the evolution of damage, especially delamination and crater, in a composite Glass/Epoxy woven fabric, using repeated impact tests at low energy levels (<10J). Both types of damage that arise and grow within the material cannot be independent from each other. Our objective in this work is to establish the interaction between two damages (delamination and crater) on laminate damage, and understand the contribution of each of them in the different phases through which passes the composite before perforation. To do this, impact fatigue tests are carried out on composite plates and measures of the crater size (diameter and depth) and the size of the delaminated area (diagonals from a diamond shape) are collected for different numbers of impacts and impact energies. A question worth asking; can we foster one of these damages over the other? especially when we are interesting to the “structure applications”, where one "prefers" perforation to delamination (while completing correctly the function's intended to the structure), or “shielding applications”, where one "prefers" the delamination to perforation. Although the range of impact velocities is not the same, it is still interesting to consider the synergy between these two damages at low impact velocities, always in the case of “structure applications” and “shielding applications”.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3