Rolling Contact Fatigue Crack Growth Prediction by the Asperity Point Load Mechanism

Author:

Hannes Dave1,Alfredsson B.1

Affiliation:

1. KTH (Royal Institute of Technology)

Abstract

The crack path and growth life of surface initiated rolling contact fatigue was investigated numerically based on the asperity point load mechanism. Data for the simulation was captured from a gear contact with surface initiated rolling contact fatigue. The evolvement of contact parameters was derived from an FE contact model where the gear contact had been transferred to an equivalent contact of a cylinder against a plane with an asperity. Crack propagation criteria were evaluated with practically identical crack path predictions. It was noted that the trajectory of largest principal stress in the uncracked material could be used for the path prediction. The mode I fracture mechanism was applicable to the investigated rolling contact fatigue cracks. The simulated path agreed with the spall profile both in the entry details as in the overall shape, which suggested that the point load mechanism was valid not only for initiation but also for rolling contact fatigue crack growth. Different equivalent stress intensity factor ranges were used to estimate the fatigue life, which agreed with the life of the investigated gear wheels.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference12 articles.

1. T.E. Tallian: Failure Atlas for Hertz Contact Machine Elements, ASME Press (1992).

2. S. Way: Journal of Applied Mechanics 2 (1935), A49-A58.

3. M. Olsson, in: Engineering Against Fatigue, edited by J. Beynon, M. Brown, T. Lindley, B. Tomkins, A.A. Balkema (1999).

4. J. Dahlberg, B. Alfredsson: International Journal of Fatigue 30 (2008), 1606-1622.

5. J. Dahlberg, B. Alfredsson: International Journal of Fatigue 29 (2007), 909-921.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3