The Feature of Laser Deposition of Polymeric Composite Films from an Active Gas Phase

Author:

Liu Zhu Bo1,Jiang Xiao Hong2,Zhou Bing2,Yarmolenko M.A.1,Gorbachev D.L.1,Fedosenko N.N.1,Rogachev A.V.3

Affiliation:

1. Gomel State University after Francisk Skorina

2. Nanjing University of Science and Technology

3. Francisk Skaryna Gomel State University

Abstract

The organic-silicon films, polytetrafluorethylene (PTFE) films and its composite films with copper have been fabricated from an active gas phase by pulse laser dispersion from initial powder species. The features of all films obtained were studied with the application of attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Our results suggest that the wavelength of laser radiation impact a strong effect on the molecular structure of all films. Specifically, the peaks corresponding to the detachment of C-H bonds in the organic-silicon films and its Cu doped films at a laser wavelength of 532 nm and the destruction of the Si-O-Si groups at 266 nm due to the ultraviolet radiation have been observed. Interestingly, the concentration of Si-С6Н5 groups relative increases with a decremental of the wavelength of laser radiation. In addition, the PTFE films formed at a laser wavelength of 355 nm presented a lower order degree and high amorphous phase, while PTFE-Cu composite films at laser wavelength 266 nm exhibited enhanced crystallinity due to the presence of copper species, wherein being served as nucleation centers. Remarkably, the wavelengths of laser radiation nearly play no effect on the orderness of PTFE-Cu composite films.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the design of fixture for motor vibration test;IOP Conference Series: Materials Science and Engineering;2018-03

2. Dynamics of combined electron beam and laser dispersion of polymers in vacuum;IOP Conference Series: Materials Science and Engineering;2016-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3