Thermal Buckling Analysis of Moderately Thick Plates Using Functionally Graded Strips

Author:

Nassirnia Mohammad1,Ovesy Hamid Reza1,Ghannadpour Seyyed Amir Mahdi2

Affiliation:

1. Amirkabir University of Technology

2. Shahid Beheshti University

Abstract

In the current study, the critical buckling of functionally graded plates (FGPs) subjected to thermal loads is evaluated using the finite strip method based on the first order shear deformation theory (FSDT). The material properties of these plates are assumed to vary in the thickness direction of the plate according to the power law distribution in terms of volume fractions of the constituents. The plates’ boundary conditions are assumed to be simply supported in all the edges or clamped in side edges and simply supported on the ends. The fundamental eigen-buckling equations for the plates are obtained by discretizing the plate into some strips, called functionally graded strip (FGS). The solution is obtained by the minimization of the total potential energy as well as solving the eigenvalue problem. The effects of material gradient index, aspect ratio and different thermal loadings (i.e. uniform temperature rise and nonlinear temperature change across the thickness) on the critical buckling temperature difference will be presented in some graphical forms.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3