New Methods for Characterizing Coating Properties at Ambient and Elevated Temperatures
-
Published:2010-05
Issue:
Volume:438
Page:107-114
-
ISSN:1662-9795
-
Container-title:Key Engineering Materials
-
language:
-
Short-container-title:KEM
Author:
Bouzakis Konstantinos D.1, Batsiolas M.1, Malliaris G.1, Pappa Maria1, Bouzakis Emmanouil1, Skordaris G.1
Affiliation:
1. Aristoteles University of Thessaloniki
Abstract
In the paper, innovative methods for characterizing coatings’ properties at ambient and elevated temperatures are introduced based on various experimental procedures. Nanoindentation results, which were obtained at elevated temperatures, are evaluated by FEM algorithms, rendering possible the determination of temperature dependent coating mechanical properties. Impact tests conducted on coated specimens revealed a non-linear film impact resistance versus the temperature. The latter results were evaluated by appropriate FEM supported procedures, to predict the coating fatigue endurance stress versus the temperature. In these investigations, the impact load was induced electromagnetically for a duration of ca. 1ms, depending on the force amplitude. To change the impact load characteristics, such as frequency, impact duration etc., a new test device has been developed, employing a piezoelectric actuator. This device enables the investigation of the impact time effect on the dynamic response of coated surfaces and on the coating fatigue endurance stress. Finally, diffusion phenomena in coatings were examined by a developed convenient experimental setup. A specimen is pressed onto a coated surface at adjustable high temperature and pressure in an inert atmosphere. After this test, the diffusion of characteristic elements into the coating and vice versa is detected by EDX-microanalyses. These results contribute, among others, to the description of diffusion phenomena between coatings and various materials.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference12 articles.
1. B. Beake, S. Goodes, S. Jones, A. Gray, A. Harris, N. Pickford, J. Smith, NanoTest On-line Help File Version 1. 0 and NanoTest Manual Version 3. 0, Micro Materials Ltd, (2006). 2. HELMUT FISCHER GmbH _Co Evaluation Manual of Indentation Procedure, Germany Sindelfingen (2000). 3. K. -D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris, G. Erkens, International Journal of Materials Research and Advanced Techniques, Vol. 93 (2002), p.862. 4. K. -D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris, G. Erkens, Materials Characterization, Vol. 49 (2003), p.149. 5. K. -D. Bouzakis, N. Michailidis, S. Gerardis, G. Katirtzoglou, E. LIli, M. Pappa, R. Cremer, Advanced Engineering Materials, Vol. 10 No. 7 (2008), p.634.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|