Numerical Simulation of Reflective Crack Forming in Semi-Rigid Asphalt Pavement Subjected to Traffic Load

Author:

Yu Xin1,Du Yin Fei1

Affiliation:

1. Hohai University

Abstract

Reflective crack is one of the major technical problems in highway with semi-rigid base, studying its formatting mechanism is of great significance. By means of a numerical analysis method named RFPA, formatting process of reflective crack such as initiation and expansion was studied in asphalt pavement with semi-rigid base. Two-dimensional model of asphalt pavement with cement-treated base was established based on mechanical parameters, thickness and homogeneity of commonly used structural layer in china, symmetrical and non-symmetrical load were both considered, and crack of cement-treated base was set before loaded. First, reasons for crack initiation were studied below the bottom layer subjected to different types of loads. The conclusion showed crack under symmetrical load mainly due to pull destruction while crack under non-symmetrical load mainly due to shear failure. Then, crack expansion in asphalt layer subjected to different load numbers with different homogeneity material was studied. The result showed that with the increase of the load numbers, the deformation in the same level deformation grows continuously. Different homogeneity level of layer material has an important influence on crack expansion; higher homogeneity has better regularity.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference3 articles.

1. C. Tang, S. Wang and Y. Fu: Numerical Experiments of Rock Failure Process [M]. Beijing: Science Press. (2003).

2. J. Sun, J. Gao: Road Design Data Sets 4 - Pavement Design. Beijing: People's Communications Press. (2003).

3. G. Wang: Study on the Mechanism of Settlement and Cracking and The Technology of Dynamic Compaction in old Subgrade Widening and Reconstruction. [D]: [Dissertation]. Jinan: Shandong University. (2008).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3