Modal Approach for Forced Vibration of Beams with a Breathing Crack

Author:

Baeza Luis1,Ouyang Hua Jiang2

Affiliation:

1. Universidad Politécnica de Valencia

2. University of Liverpool

Abstract

This paper presents a method for the vibration of a beam with a breathing crack under harmonic excitation. The infinitely thin crack is characterised by a parameter that takes into account the shape and the depth of the crack. The closed- and open-crack states are both modelled by a modal approach: two sets of equations of motion cast in the modal coordinates of their individual mode shapes. The state change (from closed to open or vice versa) involves the calculation of the modal coordinates associated with the new state from the modal coordinates of the previous state. By imposing the continuity of displacement and velocity the beam at the instant of the state change, the matrix that transforms the modal coordinates from one state to the other is determined and proved to be the Modal Scale Factor matrix. This analytical approach takes advantage of exact nature and mathematical convenience of beam modes and is time-efficient. Forced vibration at various values of crack parameter is determined. It is found that as decreases (crack length increases) the vibration becomes increasingly erratic and finally chaotic.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3