An Indirect Boundary Element Method for Computing Sound Field

Author:

Gao Sheng Yao1,Wang De Shi1

Affiliation:

1. Naval University of Engineering

Abstract

Computing sound field from an arbitrary radiator is of interest in acoustics, with many significant applications, one that includes the design of classical projectors and the noise prediction of underwater vehicle. To overcome the non-uniqueness of solution at eigenfrequencies in the boundary integral equation method for structural acoustic radiation, wave superposition method is introduced to study the acoustics. In this paper, the theoretical backgrounds to the direct boundary element method and the wave superposition method are presented. The wave superposition method does not solve the Kirchoff-Helmholtz integral equation directly. In the approach a lumped parameter model is estabiled from spatially averaged quantities, and the numerical method is implemented by using the acoustic field from a series of virtual sources which are collocated near the boundary surface to replace the acoustic field of the radiator. Then the sound field over the of a pulsating sphere is calculated. Finally, comparison between the analytical and numerical results is given, and the speed of solution is investigated. The results show that the agreement between the results from the above numerical methods is excellent. The wave superposition method requires fewer elements and hence is faster, which do not need as high a mesh density as traditionally associated with BEM.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3