The Impact of Textile Wet Colouration on the Environment in 2011

Author:

Hurren Christopher1,Li Qing1,Wang Xun Gai1

Affiliation:

1. Deakin University

Abstract

Wet textile colouration has the highest environmental impact of all textile processing steps. It consumes water, chemicals and energy and produces liquid, heat and gas waste streams. Liquid effluent streams are often quite toxic to the environment. There are a number of different dyeing processes, normally fibre type specific, and each has a different impact on the environment. This research investigated the energy, chemical and water requirements for the exhaust colouration of cotton, wool, polyester and nylon. The research investigated the liquid waste biological oxygen demand, total organic carbon dissolved solids, suspended solids, pH and colour along with the energy required for drying after colouration. Polyester fibres had the lowest impact on the environment with low water and energy consumption in dyeing, good dye bath exhaustion, the lowest dissolved solids levels in waste water, relatively neutral pH effluent and low energy in drying. The wool and nylon had similar dyebath requirements and outputs however the nylon could be dyed at far lower liquor ratios and hence provided better energy and water use figures. Cotton performed badly in all of the measured parameters.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference5 articles.

1. Groff, K.A., Textile Waste, Water Environment Research. 64-4 (1992) 425-429.

2. Ciba, Terasil Shade Card. Basel, Switzerland: Ciba Specialty Chemicals Inc. (1998).

3. Ciba, Cibacron LS - Exhaust Dyeing with Low Salt Amount. Basel, Switzerland: Ciba Specialty Chemicals Inc. (1998).

4. Ciba, Lanasol Wool Dyeing. Basel, Switzerland: Ciba Specialty Chemicals. (1999).

5. Ciba, Polyamide Shade Card. Basel, Switzerland: Ciba Specialty Chemicals Inc. (1998).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3