Affiliation:
1. Shandong University of Technology
Abstract
In this paper, a generalized sub-ODE method is pro-posed to construct exact solutions of Boussinesq equation. As a result, some new exact traveling wave solutions are found.
Publisher
Trans Tech Publications, Ltd.
Reference22 articles.
1. M. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A 199 (1995) 169-172.J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, p.68–73.
2. E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, On the solitary, . wave solutions for nonlinear Hirota-Satsuma coupled KdV equations, Chaos, Solitons and Fractals 22 (2004) 285-303.
3. L. Yang, J. Liu, K. Yang, Exact solutions of nonlinear PDE nonlinear transformations and reduction of nonlinear PDE to a quadrature, Phys. Lett. A 278 (2001) 267-270.
4. E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, Group analysis. and modified tanh-function to find the invariant solutions and soliton solution for nonlinear Euler equations, Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 221-234.
5. M. Inc, D.J. Evans, On traveling wave solutions of some nonlinear evolution equations, Int. J. Comput. Math. 81 (2004) 191-202.