Research on Short Term Load Forecasting of Power System

Author:

Wang Li Zhong1,Liu Tie Nan2,Zhao Hui2,Liu Hong Bo1

Affiliation:

1. Jinlin Normal University

2. Civil Aviation University of China

Abstract

The short term load forecast of power system is one of the important tasks of power dispatch and service department, whose accuracy has a close relation with dispatch operation, production plan and quality of power supply. Artificial neural network was introduced into forecasting of short term load. Aiming at the drawback in classical BP artificial networks and combining with differential evolution algorithms, this paper puts forwards the prediction model based on real number coded DE-BP artificial networks. Experimental result show this model has high prediction accuracy and can be used into real project.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference10 articles.

1. Bashir Z, E Haw, Short term load forecasting by using wavelet neural network, Conference on electrical and computer engineering, Halifax, Canada, pp.192-206, (2006).

2. Fortuna L, Grazianis, Soft sensors for product quality monitoring in debutanizer distillation columns, Control Engineering Practice, vol. 13, pp.499-508, Aug (2005).

3. Ben F, Amamou R, Surface routhness prediction based upon experimental design and neural network models, IEEE Internal Conference on Systems, Washington, Dec. 2006, pp.752-756.

4. DANGJianW, Neural network technology and its application , Beijing: China Railway Press, (2000).

5. Enneth P, Rainer M, Jouni A. L, Differential evolution: A practical approach to global optimization (Natural Computing Series), Springer, (2006).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3