The Wind Speed Prediction Based on AR Model and BP Neural Network

Author:

Zhang Cong Lin1

Affiliation:

1. Tianjin University

Abstract

The output of the wind turbine has high randomness due to natural wind velocity. Whether the output can be predicted accurately or not is directly related to the feasibility of dispatching wind power in the power network. The key of wind farm output prediction is to predict the wind speed of wind farm site. This paper uses AR model and BP neural network to predict 24-hour wind speed, and proves the feasibility of these two predicted methods according to comparison with measured wind speed data. This paper has certain reference significance for improving the precision of wind speed prediction.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference8 articles.

1. Hai-yang Luo, Tian-qi Liu, Xing-yuan Li. Chaotic Forecasting Method of Short-Term Wind Speed in Wind Farm. Power System Technology, 2009, 33(9): p.67~71.

2. Tai-hua Chang, Lu Wang, Wei Ma. Wind Speed Prediction Based on AR, ARIMA Model. East China Electric Power, 2010, 38(1): p.59~62.

3. Christophe Sibuet Watters, Paul Leahy. Comparison of linear, Kalman filter and neural network downscaling of wind speeds from numerical weather prediction. 2011 10th International Conference on Environment and Electrical Engineering (EEEIC): p.1.

4. Wen-sheng Wang, Jing Ding, Ju-liang Jin. Stochastic hydrology (The second edition) . Beijing: China Waterpower Press, (2008).

5. S.A. Pourmousavi Kani, M.M. Ardehali. Very short-term wind speed prediction: A new artificial neural network–Markov chain model. Energy Conversion and Management, 2011, 52(1), p.738~740.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3