Damage Localization of Frame Structures Using Seismic Acceleration Response Data

Author:

Huang Ming Chih1,Wang Yen Po2,Lee Chien Liang3

Affiliation:

1. Air Force Institute of Technology

2. National Chiao-Tung University

3. Hong-Kong University

Abstract

In this study, damage localization of frame structures from seismic acceleration responses is explored using the DLV technique and ARX model for system identification. The concept of the DLV method is to identify the members with zero stress under some specific loading patterns derived by interrogating the changes in flexibility matrix of the structure before and after the damage state. Success of the DLV method for damage localization lies on the ability to identify the flexibility matrix. The ARX model, a discrete-time non-parametric auto-regressive system identification technique is adopted to identify the modal parameters (natural frequencies, transfer functions and mode shapes) from which the flexibility matrices of the intact and damaged structures are constructed. To explore the effectiveness of the DLV method, a five-storey steel model frame with diagonal bracings was considered for seismic shaking table tests. The damage conditions of the structure were simulated by partially removing some of the diagonals. With the flexibility matrices of both the intact and damaged structures synthesized on a truncated modal basis, the damage locations have been successfully identified by the DLV method for either single or multiple damage conditions, regardless of the damage locations. This study confirms the potential of the DLV method in the detection of local damages from global seismic response data for frame structures.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3