Some New Results for the Study of Acoustic Radiation within a Uniform Subsonic Flow Using Boundary Integral Method

Author:

Beldi M.1,Maghrebi A.1

Affiliation:

1. University Tunis El Manar

Abstract

In this paper, a reformulation of the Helmholtz integral equation for tridimesional acoustic radiation in a uniform subsonic flow is presented. An extension of the Sommerfeld radiation condition, for a free space in a uniform movement, makes possible the determination of the convected Green function, the elementary solution of the convected Helmholtz equation. The gradients of this convected Green function are, so, analyzed. Using these results, an integral representation for the acoustic pressure is established. This representation has the advantage of expressing itself in terms of new surface operators, which simplify the numerical study. For the case of a regular surface, the evaluation of the free term associated with the singular integrals shows that it is independent of the Mach number of the uniform flow. A physical interpretation of this result is offered. A numerical approximation method of the integral representation is developed. Furthermore, for a given mesh, an acoustic discretization criterion in a uniform flow is proposed. Finally, numerical examples are provided in order to validate the integral formula.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3