Investigation of the Improvements on Mechanical Properties and Thermal Performance of MgO-MgAl2O4 Composite Refractories by Additions of ZnO-Al2O3 to MgO

Author:

Aksel Cemail1

Affiliation:

1. Anadolu University

Abstract

The variations and developments with the reasons on the mechanical properties of MgO-MgAl2O4 and MgO-ZnO-Al2O3 composite refractories were examined and thermal parameters affecting the durability of composites at high temperatures were investigated. The density, porosity, strength, modulus of elasticity, fracture toughness, fracture surface energy, critical defect size and mean MgO grain size values of composites were measured/calculated and evaluated. In addition, microstructural changes using XRD measurements and SEM analysis were examined. Thermal stress/shock parameters R and Rst that are used for determining high temperature performance of composites were calculated. The relationships between mechanical properties and structural variations for different compositions and the factors affecting this connection were investigated. With the additions of various amounts of ZnO-Al2O3 to MgO, significant improvements were achieved on both mechanical properties and R-Rst parameters of in-situ formed M-S-ZnAl2O4 composite refractories, compared to MgO-MgAl2O4 materials containing preformed spinel, by factors of up to 3.6 and 2.0, respectively. The important parameters increasing mechanical properties and thermal performance of M-S-ZnAl2O4 composites were determined as follows: i) formation of ZnAl2O4 phase leading to a high resistance to crack initiation and propagation, ii) propagation of microcracks formed in the structure for a short distance by interlinking to each other, iii) arresting or deviation of microcracks when reaching pores or ZnAl2O4 particles, and additionally iv) co-presence of both intergranular and transgranular types of cracks on fracture surfaces, and with the incorporations of ZnO-Al2O3, v) increase in density, vi) rise in critical defect size, and vii) a significant reduction in MgO grain size. The optimisation of M-S-ZnAl2O4 composite refractories that could be used for obtaining longer service life in industrial applications was performed.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference17 articles.

1. S.C. Cooper and P.T.A. Hodson: Trans. J. Brit. Ceram. Soc. Vol. 81 (1982), p.121.

2. M.R. Dal, B. Fabbri and C. Fiori: Industrial Ceramics Vol. 8 (1988), p.121.

3. G.R. Eusner and D.H. Hubble: J. Am. Ceram. Soc. Vol. 43 (1960), p.292.

4. P. Bartha: Proc. Int. Symp. Refractories, Hangzhou (1989), p.661.

5. R. Sarkar, S.K. Das and G. Banerjee: Ceram. Int. Vol. 29 (2003), p.55.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3