Kinetics Study on Non-Isothermal Crystallization of Amorphous Alloy Mg65Cu15Ag10Y10

Author:

Wang Xiao Jun1,Xia Tian Dong2,Chen Xue Ding2

Affiliation:

1. Lanzhou University of Science and Technology

2. Lanzhou University of Technology

Abstract

The crystallization kinetics of amorphous alloy Mg65Cu15Ag10Y10has been studied by differential scanning calorimetry in the mode of continuous heating annealing. It is found that both DSC curves and activation energy show a strong dependence on the heating rate. The activation energy for crystallization are determined as 186.1 and 184.4 KJ mol−1for the heating rates β=5-20 Kmin−1, and 107.5 and 110.0 KJmol−1for the heating rates β=20-80Kmin−1, when using the Kissinger equation and the Ozawa equation, respectively. Local activation energy at any volume fraction crystallized was obtained by the general Ozawa's isoconversional method. The average value of local activation energy for heating rates ranging from 5 to 20Kmin−1is 180.9 KJ mol−1and for heating rates ranging between 20 and 80Kmin−1is 110.2 KJ mol−1. Using the Suriñach curve fitting procedure, the kinetics mode was specified. The JMA kinetics is manifested as a rule in the early stages of the crystallization. The JMA exponent,n, initially being larger than 4 and continuously decreases to about 2 along with the development of crystallization. The NGG-like mode dominates in the advanced stages of the transformation. These two modes are mutually independent. The proportion between the JMA-like and the NGG-like modes is related to the heating rate.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3