Energy Conservation through Multi Winding Induction Machines

Author:

Chandrasekaran V1,Manigandan T2

Affiliation:

1. Department of Electrical and Electronics Engineering,Sri Krishna College of Engineering and Technology

2. School of Electrical Sciences, Kongu Engineering College

Abstract

Three phase induction motors are employed in Textile mills, Agriculture and in almost all the machine tools. More than 60% of electrical energy generated being consumed by the induction motors. Hence, even a small contribution in the improvement of the power factor and efficiency will be cost effective. The power factor and efficiency of an induction motor is based on the shaft load and in order to improve the same, multi windings are suggested in the same stator. In multi winding induction machines, when one set of windings is connected to a three phase a supply, a revolving magnetic field of constant magnitude is developed in the air gap which is responsible to work as a conventional induction motor to meet the mechanical load and to develop a three phase EMF in the other winding that works as an Induction Alternator (IA).Double Winding Induction Motor (DWIM) also provides an opportunity to load each winding individually to its rated capacity. A small three phase load or a single phase load may be connected to the second set of winding. The dependency of separate supply for this load is eliminated. Hence, improvement in the efficiency, power factor and energy conservation is made possible in these machines. In order to validate the problem statement, a 3-phase, 3.0 kW, 415 V Double Winding Induction Motor(DWIM), a 3-phase, 3.0 kW, 415 V Double Winding Synchronous Reluctance Motor (DWSyRM), a 3-phase, 2.2 kW, 415 V Three Winding Induction Motor (TWIM) have been designed, fabricated and tested. Two controllers have been designed, one for a DWIM to operate the motor in power balancing and maximum efficiency modes of operation and other to operate TWIM at three different voltage levels depending upon the shaft load. In this paper, detailed comparisons of performances of three multi winding machines are presented.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3