SMA Dampers for Cable Vibration: An Available Solution for Oscillation Mitigation of Stayed Cables in Bridges

Author:

Torra Vicenç1,Isalgue Antonio2,Auguet Carlota2,Casciati Fabio3,Casciati Sara4,Terriault Patrick5

Affiliation:

1. Universitat Politècnica de Catalunya

2. Uuniversitat Politècnica de Catalunya

3. University of Pavia

4. University of Catania

5. École de Technologie Supérieure (ETS)

Abstract

Several solutions have been proposed to mitigate the vibrations of stay cables in bridges, which are subjected to wind, rain and traffic loads. One possible solution relates to the use of semi-active devices, such as the ones based on magneto-rheologic fluids. These devices need guaranteed electrical power, together with computational effort and technical attention. In contrast, shape memory alloy (SMA) wires were studied for application as passive elements. In the present work, the properties of SMA that are required to realize dampers provided with an appropriate reliability are discussed. In particular, the fatigue/fracture life of the SMA wires and the thermal effects induced by both external temperature and the self-heating process are studied. The SMA dampers were applied to stayed cables of realistic size and tested in "facilities." Namely, the cables No 1 of 45 m length available at the ELSA-JRC in Ispra, Italy, and the 50 m cable of IFSTTAR near Nantes, in France, were considered. The experimental results establish a reduction of the vibration amplitude to one half or less than the one observed in the un-damped case. Furthermore, the installation of the SMA dampers causes an increase of the cable frequency. Performing a Windowed Fourier Transform or a Wavelet Transform analysis the evolution of frequency with the signal amplitude was studied. The change of amplitude produces a change of stiffness in the SMA. The adoption of an appropriate phenomenological model of the hysteresis cycle permits to perform numerical simulations using standard Finite Elements Analysis tools such as, for instance, the ANSYS software.

Publisher

Trans Tech Publications Ltd

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3