Quantitative TEM Investigations on EUROFER 97 Irradiated up to 32 Dpa

Author:

Weiss Oliver J.1,Gaganidze Ermile1,Aktaa Jarir1

Affiliation:

1. Karlsruhe Institute of Technology (KIT)

Abstract

The objective of this work is to evaluate the microstructure of the neutron-irradiated reduced activation ferritic/martensitic (RAFM) steel EUROFER 97. For this purpose irradiation induced defects like defect clusters, dislocation loops, voids/bubbles and precipitates are identified by transmission electron microscopy (TEM) and quantified in size and volume density. Emphasis is put on analyzing the influence of the irradiation dose and neutron fluxe on the evolution of size and density of the defects at irradiation temperatures between 300 and 335 °C. A first sample irradiated to a dose of 31.8 dpa was analyzed. The irradiation was carried out in the BOR 60 fast reactor of JSC “SSC RIAR” in Dimitrovgrad, within the framework of the ARBOR-1 irradiation program. To study the dose dependence in a next step the results will be compared to quantitative data on samples irradiated to a dose of 15 dpa. The obtained quantitative data will be used for correlation of the changes in the microstructure to the changes in the mechanical properties and will serve as an input for models describing this correlation.

Publisher

Trans Tech Publications Ltd

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3