Fatigue Behavior of Medium Entropy Alloys AlCrFe<sub>2</sub>Ni<sub>2</sub> and AlCrFe<sub>2</sub>Ni<sub>2</sub>Mo<sub>0.1 </sub>- A Comparison with Super Duplex Steel 1.4517

Author:

Hemes Susanne1,Gein Sergej1,Navaeilavasani Niloofar1,Hecht Ulrike1

Affiliation:

1. ACCESS e.V.

Abstract

In the present study the notched fatigue behavior of two multi-phase medium entropy alloys (MEAs) AlCrFe2Ni2 and AlCrFe2Ni2Mo0.1 was characterized by three-point-bending (3-PB), along with a super-duplex steel 1.4517 as a reference material. An analytical approach for characterizing the fatigue notch factor (kf), based on grain size analysis in combination with finite element modelling (FEM) was used, relating the theory of critical distances (TCD) to the grain size of the material. To validate the approach, for the reference steel, the fatigue notch factor was also determined experimentally by comparing the fatigue behavior of notched and smooth specimens, resulting in an experimentally determined fatigue notch factor (kf) ~ 1.07. The numerically and analytically estimated notch effects increase with decreasing average grain size and vary between ~ 1.07 for the coarse-grained reference material – in very good agreement with the experimental results – and ~ 1.35 for the much more fine-grained AlCrFe2Ni2Mo0.1 medium entropy alloy. Note that these values are significantly lower than the stress concentration factor (kt) ~ 1.58, associated with the notch geometry. Fatigue endurance limits were measured at a fatigue stress ratio R ~ 0.1 (unidirectional stress), but were converted to fatigue amplitudes at R = -1 (σa, R-1, fully reversed stress), to be able to make due comparisons with available literature data, by using the elliptical relationship. The resulting fatigue endurance limit amplitudes for specimens surviving at least 2E+06 cycles for a minimum of three tested samples and including notch effects are σa, R-1 ~ 508 MPa for the AlCrFe2Ni2 alloy, σa, R-1 ~ 540 MPa for the AlCrFe2Ni2Mo0.1 alloy modification and σa, R-1 ~ 400 MPa for the reference super-duplex steel, putting the analyzed MEAs into a very competitive position compared to Cobalt containing multi-phase high or medium entropy alloys as well as commercially available steels.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3