Affiliation:
1. Sampoerna University
2. Institut Teknologi Bandung
3. Kawasan Industri Terpadu Indonesia-China (KITIC)
Abstract
Corrugated cardboard has multilayer construction that produces rigid, durable, and worthy material for shipping heavy goods or hazmat. The numerous advantages offered have made it a worldwide staple in the warehousing, packaging, and transportation industries. Unfortunately, studies on corrugated cardboard’s mechanical properties and behavior are still limited due to the complexity of structures and testing procedures. The present work investigates corrugated cardboard’s mechanical properties and behavior by conducting uniaxial tensile and compressive tests. Three different testing directions in x, y, and z-axes were applied on AA-flute double-wall (AA/F-DW) or virgin pulp paper Bi-Wall corrugated cardboard. The stress-strain curve is measured and evaluated to obtain the mechanical properties, i.e., yield strength and ultimate strength. The result shows that corrugated cardboard has linear and non-linear mechanical behavior or elastic-plastic regions under those different directions. Moreover, the flute on the corrugated cardboard gives jaggedness to the stress-strain curve and makes the material more elastic, more durable, and has better absorbing energy capacity. This finding could be used to design any products, such as a packaging frame made of corrugated cardboard, where the strength of the structure could be predicted based on the mechanical properties and behavior.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference24 articles.
1. The Role of Buckling in the Estimation of Compressive Strength of Corrugated Cardboard Boxes;Garbowski;Materials,2020
2. Estimation of the Compressive Strength of Corrugated Cardboard Boxes with Various Openings;Garbowski;Energies,2020
3. An Overview of the Reducing Principle of Design of Corrugated Box Used in Goods Packaging;Chen;Procedia Environmental Sciences
4. A. Goyat, N. Singh, V. Arya, Study of corrugation process for optimum utilization of fibre board, Int. J. Eng. Sci. Res. Technol. 7 (2018) 196-200.
5. V.D. Luong, A.S. Bonnin, F. Abbès, J.B. Nolot, D. Erre, B. Abbès, Finite element and experimental investigation on the effect of repetitive shock in corrugated cardboard packaging, J. Appl. Comput. Mech. 7 (2021) 820-830.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献