Affiliation:
1. Institute of Space Technology (IST)
2. Experimental Physics Labs
Abstract
Shape memory alloys (SMAs) are smart materials that have the ability to recover large strain. The shape memory and superelasticity in these alloys is due to stress induced martensitic transformation that strongly depends upon the phase transformation temperatures. These alloys are being investigated for a number of applications due to their remarkable properties such as improved impact and damage resistance, vibration damping, seismic damping, shape morphing and crack closure properties. In this work, these alloys were integrated in fiber reinforced polymers (FRPs) to develop hybrid composite structures that can benefit from both fiber strength and intrinsic properties of SMAs resulting in weight efficient smart materials with better mechanical properties. The experimental investigation on impact performance of nitinol SMAs wire reinforced glass fiber composites (GFRP) showed 18% increase in toughness, as compared to steel wire reinforced glass fiber composites. In this paper, the effect of shape memory alloys wires in composite materials and their targeted applications especially for aerospace industry is presented.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献