Affiliation:
1. University of Al-Kafeel
2. University of Babylon
Abstract
Meeting stringent emission regulations, the demand for environmentally friendly fuels is increasing by the day. Alternative fuel must be burned alongside conventional fuel to increase the availability of such clean energy sources. The current experimental study investigates the characteristics of the premixed LPG flames with CO2 dilution in tube swirling and non-swirling burners. The study including testing the effects of equivalence ratios, φ, (0.8, 1, 1.2, & 1.4), CO2 dilution ratios (0%, 5%, 7.5%, & 10%), and aspect ratio of the non-swirling burner (2, 4, 6, 8, & 10). Two swirling burners with swirl number was tested, namely 0.78 & 0.48. The dilution of CO2 has been observed lengthens the flame, particularly at higher equivalence ratios and/or flow rates since there is more than one influence, they all agree on a similar influence on flame height. The flame shortens clearly when using a swirling burner. Besides, when increasing the swirl number, the flame height increases slightly. Also, the swirling burner divided the flame's inner core into segments equal to the number of swirl vanes, and a flower-shaped flame was generated at low flow rates. The burner’s aspect ratio affects flame height insignificantly. Flame stability limits increase for a higher equivalence ratio and it enhances due to CO2 addition. The LPG-CO2/air mixture has an improved reply to beat flame flashback. The addition of CO2 expands the flow rate of stable flame by about 40% and 25% for φ = 1 and 1.2 respectively. Utilizing a swirling burner improves flame stability greatly. The limit between flashback and blowout increased by about three times as a result of using a swirling burner.
Publisher
Trans Tech Publications, Ltd.
Subject
Anesthesiology and Pain Medicine
Reference30 articles.
1. M. A. Nemitallah, "Numerical analysis supported with experimental measurements of premixed oxy-propane flames in a fuel-flex gas turbine combustor," no. April, p.1–24, 2021.
2. Analysis of industrial flame characteristics and constancy study using image processing technique;Samantaray;Journal of Mechanical Engineering and Sciences,2015
3. T. M. Dabade et al., "CFD Simulation of Confined Non-Premixed Flames," in Heat Transfer Summer Conference, vol. 44786, p.235–242, 2012.
4. D. la Cruz-Ávila, D. León-Ruiz, I. Carvajal-Mariscal, G. Polupan, and L. D. G. Sigalotti, "Luminous Flame Height Correlation Based on Fuel Mass Flow for a Laminar to Transition-to-Turbulent Regime Diffusion Flame," arXiv2008.12209, 2020.
5. H. A. K. Shahad and A. S. Yasiry, "An experimental study of the effect of hydrogen blending on laminar flame speed for iraqi LPG," Iraqi J. Mech. Mater. Eng., vol. 17, no. 4, 2017.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献