Cost-Effective Synthesis of Cobalt Ferrite Nanoparticles by Sol-Gel Technique

Author:

Abdullah Minhal1,Hasany Syed1,Amir Qureshi Muhammad1,Hussain Sajid1

Affiliation:

1. NED University of Engineering and Technology

Abstract

In material science, doping method is employed to produce nanoferrites with desired characteristics. Recently, cobalt doped iron oxide nanomaterials have gained importance in industry for multiple electronic/electrical applications. Large number of methods have been adopted for the synthesis of nanoparticles (NPs), but high manufacturing cost, uniform sized, and anisotropic behaviors limit the commercial applications. In the presented work, cobalt doped (Co-Fe nanomaterials) are developed by a cost-effective sol-gel approach. The doped cobalt ferrites NPs (1%, 2%, and 3% doping of cobalt) were prepared and characterized by XRD, SEM & TEM, FTIR, and VSM techniques. XRD and microscopic (SEM & TEM) analysis revealed synthesis of hexagonal structured cobalt ferrite sized from ~16nm to ~8nm, with the increasing doping pattern of Cobalt from 1% to 3%. FTIR analysis showed the formation of well-structured oxides, which is in strong agreement with XRD and microscopy techniques. Moreover, VSM analysis revealed that cobalt ferrite nanoparticles possess ferromagnetic properties with Ms, Mr and Hc values of 0.038emu/g, 0.005emu/g and 405.19Oe respectively. In addition, squareness (Mr/Ms = 0.16) indicates the presence of single domain spherical particles.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3