Affiliation:
1. Universitas Islam Negeri (UIN) Sunan Kalijaga
Abstract
Plant diseases are taken into consideration as one of the major factors affecting food production and minimizing losses in production, and plant diseases must have rapid detection and recognition. Tomato (Lycopersicon esculentum) is one of the foodstuffs that are rich in nutrition and nutrients. Tomatoes are widely consumed by many countries including Indonesia and are hunted to be created in various spices, so tomatoes have a role in the economy due to the large demand. The recent enlargement of device studying techniques has found its application in plant disease detection especially tomato plants, presenting a powerful tool with relatively accurate effects. In this study, we present a systematic literature review aimed at identifying disease images in tomato plants. In this regard, we review 16 studies selected in the last five years with different approaches to address aspects related to tomato plant disease detection.
Publisher
Trans Tech Publications Ltd
Reference19 articles.
1. Implementasi Artificial Neural Network (ANN) Backpropagation Untuk Klasifikasi Jenis Penyakit Pada Daun Tanaman Tomat;Putri;MATHunesa: Jurnal Ilmiah Matematika,2021
2. IDENTIFIKASI PENYAKIT PADA DAUN TOMAT BERDASARKAN FITUR WARNA DAN TEKSTUR;Mungki Astiningrum;Jurnal Informatika Polinema,2020
3. A. Nainggolan, H. Rumapea, A. P. Silalahi, L. Sidauruk, and M. Sinambela, "Identifikasi Penyakit Tanaman Tomat Berdasarkan Citra Penyakit Menggunakan Metode GLCM dan Naïve Bayes Classifier," J. Ilm. Tek. Inform., vol. 2, no. 1, p.22–28, 2022, [Online]. Available: http://ojs.fikom-methodist.net/index.php/METHOTIKA
4. Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN);Iswantoro;Jurnal Ilmiah Universitas Batanghari Jambi,2022
5. S.C.P.F. Fabbri et al., "Externalising tacit knowledge of the systematic review process," IET Softw., vol. 7, no. 6, p.298–307, 2013.