Porous NiTi Shape Memory Alloy Fabricated via Powder Metallurgy Technique Using Pore Forming Agent

Author:

Abd Kadir Nur Amanina1,Zaki Hafizah Hanim Mohd1,Abdullah Jamaluddin2,Daud Farah Diana Mohd1,Sariffudin Norshahida1

Affiliation:

1. International Islamic University Malaysia

2. University Sains Malaysia (USM)

Abstract

Porous NiTi shape memory alloy is of special interest for biomedical purposes especially for human bones application due to its attractive features such as lower stiffness to minimize the effect of stress shielding and good strength to prevent deformation and fracture apart from its shape memory effect and superelastic behavior. With all these great benefits, however, the challenge is to produce porous NiTi which resembles cancellous bone. Therefore, in this research, pore forming agent such as calcium hydride, CaH2, is added to the equiatomic of Ni and TiH2 powder mixture to produce porous NiTi with higher porosity level using powder metallurgy technique. Here, the effect of composition of pore forming agent on porosity level, phase formation and transformation behaviour of porous NiTi were investigated. From the observation, the pores formation exhibits small closed pores instead of interconnected pores. The result also shows that by adding 3wt% composition of pore forming agent, the porosity level of sample sintered can reach up to 32%. For phase transformation behavior, there are martensitic transformation peaks observed both upon cooling and heating for all samples, however the overall enthalpy changes are significantly lower (<2 J/g). This due to undesirable phase such NiTi2, Ni-rich phase and also Ni3Ti that co-exist with NiTi formation, thus jeopardize the transformation enthalpy for porous NiTi.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Pore Forming Agent on Phase Transformation Behavior of Porous NiTi Shape Memory Alloy;Proceeding of 5th International Conference on Advances in Manufacturing and Materials Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3