Simulation of Liquefied Natural Gas (LNG) Fluid Flow on Ambient Air Vaporizer

Author:

Mohd Nor Mohd Asri1,Mohamad Razki Muhammad Ammar Imran1,Manan Nor Fazli Adull1

Affiliation:

1. Universiti Teknologi MARA

Abstract

An ambient air vaporizer (AAV) is an industrial heat exchanger equipment used in the vaporization process of liquefied gases before supplying to consumers. AAV utilizes the simple heat transfer principle that uses surrounding ambient air to vaporize the liquefied gases. Liquefied Natural Gas (LNG) is one of the liquefied gases commonly associated with AAV applications. Due to a significant temperature difference between cryogenic fluid of LNG and ambient air, frost formation is inevitable to reduce the heat transfer rate. Fins geometry contributes a substantial impact on the performance of AAV and is the main element of heat transfer for AAV. This study aims to design a model of an AAV with a star 6-finned tube vaporizer with hexagon shape and to simulate the fluid flow on the vaporizer model to demonstrate the LNG vaporization process. The hexagon vaporizer model is designed using Solidworks, and heat transfer model is simulated using computational fluid dynamics (CFD) tool, Ansys Fluent solver. Parameters such as fin geometry, LNG flowrate and wind speed were referred from previous studies. Methane and air are assumed as working fluids inside and outside of the vaporizer model. Wind temperatures of 300K (27°C), 303K (30°C), and 306K (33°C) are utilized in the simulation process based on geometrical weather in Malaysia. In the simulation model, methane entered from the bottom of the tube, while air entered horizontally at x-direction from the right side. The temperature contour shows that as the temperature of methane that flowed inside the tube increased as it entered the tube, the air temperature reduced as it entered and flowed passes through the finned tube. The analysis from the simulation model shows that higher air temperature with substantial wind speed can increase the outlet temperature of methane (LNG), thus improving the performance of AAV.

Publisher

Trans Tech Publications Ltd

Reference22 articles.

1. Modeling CO2 emissions in Malaysia: an application of Maki cointegration and wavelet coherence tests;Zhang;Environmental Science and Pollution Research,2021

2. Transition of renewable energy policies in Malaysia: Benchmarking with data envelopment analysis;Mohd Chachuli;Renewable and Sustainable Energy Reviews

3. Toward a sustainable environment: Nexus between economic growth, renewable energy use, forested area, and carbon emissions in Malaysia;Raihan;Resources, Conservation & Recycling Advances

4. Energetically enhanced natural gas liquefaction process with CO2 precooling;Waqar;Energy Conversion and Management: X

5. C. F. Wang, Liquefied Natural Gas: Understanding the Basic Facts, vol. 8, no. 2 (2005)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3