Effect of the Spacing Design of Two Alternate Baffles on the Performance of Heat Exchangers

Author:

Salhi Jamal-Eddine1,Amghar Kamal1,Filali Abdelkader2,Salhi Najim1

Affiliation:

1. First Mohammed University

2. Ecole National Polytechnique de Constantine

Abstract

The present study investigates numerically the heat transfer process based forced convective flow of an incompressible fluid in a two-dimensional rectangular channel. Two baffles are imposed periodically on the lower and upper walls. The study mainly focused on the influence of the arrangement and spacing separating the baffles on the heat transfer's intensification. The values of the Reynolds number for the present turbulent flow regime were chosen in the range of 104 to 8.73 × 104. The equations resulting from the three conservation laws, namely continuity, Navier-Stokes, and energy equations, are solved numerically based on the finite volume method. SIMPLE algorithm is used to overcome the pressure-velocity coupling, and k-ε model is used for the computation of turbulent patterns. Numerical simulations are carried out to study the dynamic and thermal behavior influenced by the control parameters. The physical quantities calculated are the axial velocity, the local, mean Nusselt numbers and the friction coefficient. The obtained results show that the friction coefficient decreases proportionally with the increase of Re number, and the local Nusselt number increases with the Reynolds number. As the spacing between the baffles decreases, the NR ratio increases, and as the Reynolds number increases, NR decreases NR = 6.13, 5.31, 4.62, and 4.30 for case P1, NR = 5.1, 4.5, 3.89, and 3.64, for case P2, NR = 5.00, 4.45, 8.83, and 3.51, for case P3, for equal Reynolds number, 104, 2×104, 4×104, 8.73×104, respectively.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3