Impact of Improved Unified Power Quality Conditioner Allocation in Radial Distribution Network

Author:

Osaloni Oluwafunso Oluwole1,Saha Akshay Kumar1

Affiliation:

1. University of Kwazulu Natal

Abstract

This paper presents the investigative study on the Unified Power Quality Conditioner (UPQC) impact on Radial Distribution System (RDS). The architecture of Power Angle Controlled UPQC named Improved Unified Power Quality Conditioner (I-UPQC) was implemented in RDS. The problem of power loss, under-voltage, and reactive power burden on shunt inverters are the significant issues addressed in this study. The allocation of I-UPQC by placing it at each bus of the RDS one node at each iteration, excluding the swing bus, is studied by considering its impact on each bus of the radial network. The Power Loss Index (PLI) and Degree of Under Voltage Mitigation Node (DUVMN) values of all the buses are calculated analytically using distribution framework expressions of I-UPQC. Hence, the bus having the highest PLI value, and the minimum permissible node voltage is the most favourable. The determination of the candidate bus for I-UPQC was achieved by the load flow algorithm. The results obtained in this study on IEEE 33 and 69 bus system shows 3.9% and 4.2% power loss reduction respectively for both networks. Also, the minimum bus voltage was improved to 0.954 p.u. and 0.955 p.u. in each case for both networks, after the allocation of I-UPQC in RDS, compared to the base case. Consequently, the VA burden on shunt inverter was reduced by reactive power compensation of the series inverter. The results and simulation obtained in MATLAB / SIMULINK environment and discussion to support the concept developed are also presented. The results from the study confirmed that the concept of I-UPQC placement impacted the operation of RDS compared to the other connected UPQC model.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3