Role of Viscosity on Optimum Polymer-Fibre Interaction during Rotational Moulding Sintering

Author:

Castellanos David1,Martin Peter1,McCourt Mark1,Kearns Mark1,Butterfield Joseph1,Cassidy Patrick2

Affiliation:

1. The Queen's University of Belfast

2. Platinum Tanks Ltd.

Abstract

The present work investigated the effect of polymer viscosity properties on the sintering of a fibre-reinforced rotationally moulded composite part. Previous researchers have concluded that polymer characterisation is fundamental to achieving optimum composite materials processing in rotational moulding. Nevertheless, the presence of a disperse phase during sintering directly impacts the current understanding of how sintering works during heating. Lack of pressurisation during rotational moulding implies an absence of driving forces to strongly bond two materials together as necessary in composite structures. It means that sintering and densification are the fundamental phases in which two or more materials can create an interface that can transmit stresses. A novel single-particle interaction test (FPIT) investigated the effect of polymer adhesion during sintering. The test was developed to identify the optimum parameters to achieve the best polymer adhesion to the fibre. The test focused on measuring the polymers' angle of contact (AoC) to the fibre to better understand how to achieve optimum fibre coverage. Combinations of glass fibre (G.F.) with polyethylene (P.E.) of various melt flow indexes (MFI) were tested to identify the role of viscosity on fibre-polymer adhesion. Attempts to automate the contact angle measurement proved challenging, so manual measurement proved to be more effective. Sintering results showed that polymer viscosity has a critical effect on fibre wetting, and the use of Hi-MFI resins or plasticisers can improve adhesion. Finally, results showed that polymer-fibre characterisation plays a crucial role in sintering and densification, and work is ongoing to present conclusions about how sintering and densification affect the full-scale manufacturing process.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3